RehabiMed Method

Traditional Mediterranean Architecture

II. Rehabilitation Buildings
RehabiMed
Method
Traditional
Mediterranean
Architecture

II. Rehabilitation
Buildings

THIS PROGRAMME IS FINANCED BY THE EUROPEAN UNION

EUROMED
EUROMED HERITAGE
AGENCIA ESPAÑOLA DE COOPERACIÓ INTERNACIONAL
COL·LEGI D’APARELLADORS I ARQUITECTES TÈCNICS DE BARCELONA

RehabiMed
Consortium RehabiMed:

Project Manager:
Xavier CASANOVAS

Members:

Ministry of Communications and Works
Department of Antiquities of Cyprus
Person in charge: Evi FIOURI

Bureau Culturel de l'ambassade de la République Arabe d'Egypte en France
Supreme council of antiquities, Egypt
Persons in charge: Mahmoud ISMAIL et Wahid Mohamed EL-BARBARY

Collegi d'Apelladoris i Arquitectes Técnicos de Barcelona, Espagne
Persons in charge: Xavier CASANOVAS

Ecole d'Avignon, France

Centre Méditerranéen de l'Environnement Marrakech, Maroc
Persons in charge: Moulay Abdessam SAMRAKANDI

Institut National du Patrimoine, Tunisie
Persons in charge: Mourad RAMMAH

Director:
Xavier CASANOVAS

Coordination of the volumes:
Oriol CUSIDO
Ramon GRAUS
Amélia MARZAL

Development and drafting of the method:
Oriol CUSIDO
Ramon GRAUS

Network of experts of the RehabiMed Consortium:

Cyprus
Persons in charge: Evi FIOURI et Irene HADJIASA
Constantinos AILKIDES
Athina ARISTOTELOUS-CLERIDOU
Michael COSMAS
Elaina GEORGIOU
Kyriakos KOUNDOUROS
Yiota KOUROU
Athina PAPIADOPoulos
Agapi PETRIDOU
Elefni PETROPOULOU
Maria PHILOKYPROU
Elefni PISARIKOUDI
Socrates STRATIS

Egypt
Persons in charge: Mahmoud ISMAIL et Wahid Mohamed EL-BARBARY
Mahmoud ABD EL MAGEED
Mahmoud EL-ALFY
Mohamed ELARABY
Philippe HEARINGER
Hany HELAL
Bernard MAURY
Mohamed SIEF AL-YAZEL

Spain
Persons in charge: Oriol CUSIDO et Ramon GRAUS
Marti ABELLA
Josep ARMENGOL
Santiago CANOSA
César DIAZ GOMEZ

France
Persons in charge: René GUERIN et Patrice MOROT-SIR
Xavier BENOIST
Christophe GRAZ
Maria LOPEZ DIAZ
Michel POLGE
Jean-Alexandre SIRI
Christian THRITOT
Veronique WOOD

Morocco
Persons in charge: Abderrahim KASSOU et Quentin WILBAUX
Karim ACHAK
Mohamed BOUZZAOUI
Hicham ECHFAA
Jamal Eddine EL-GHORAFI
Ameziane HASSANSI
Oum-Kaltoum KOBBI
Saïd LOQMANE
Abdelatif MAROU
Ahmed QUARZAZI

Tunisia
Persons in charge: Radha BEN M'BAREK et Abdellatif GHILENI
Mourad RAMMAH
Mohamed KERRIOU

Collaborating experts in other Mediterranean countries:

Nur AKIN (Turkey)
Nazmi AL-JUBEH (Palestine)
Mustafa AL-NADDAF (Jordan)
Ziad AL-SAAD (Lebanon)
Suad AMIRY (Palestine)
Koksal ANADOL (Turkey)
Carlo ATZENI (Italy)
Abdelfaziz BADJAIDA (Algeria)
Kurtel BELMA (Turkey)
Demet BINAN (Turkey)
Can BINAN (Turkey)
Andreas BSUNO (Italy)
Khalidn BSHARA (Palestine)
Yotam CARMEL (Israel)
Baru CELEBIOGLU (Turkey)
Vito CENTONTO (Italy)
Nathalie CHAHINE (Lebanon)
Ofer COHEN (Israel)
Michel DADOU (Lebanon)
Habib DEBS (Lebanon)
Michelangelo DRAGONE (Italy)
Reuven ELBERGER (Israel)
Tal EYAL (Israel)
Fabio FATIGUSO (Italy)
Antoine FISCHFISCH (Lebanon)
Yael FUHRMANN-NAAMAN (Israel)
Giovanni FURIURO (Italy)
Sinan GENIM (Turkey)
Feyhan INKAYA (Turkey)
Montier JAMHAWI (Jordan)

Egypt

Oussama KALAB (Lebanon)
Nikolaos KALOGIROU (Greece)
Vito LAUDADIO (Italy)
Yasmin MAKAROU BOU ASSAF (Lebanon)
Moshe MAMON (Israel)
Hilmi MARAO (Palestine)
Filippe MARIO LOPES (Portugal)
Nikolaos MOUTSOPOULOUS (Greece)
Farhat MUHAWI (Palestine)
Yael F. NAVAMAN (Israel)
Yassine OUAGENI (Algeria)
Alkmini PAKA (Greece)
Rubí PELED (Israel)
Avi PERETS (Israel)
Simona PORCELLI (Italy)
Bougnenira-Hadj QUENZA (Algeria)
Cristina Scarpocchi (Italy)
Sinan SENIL (Turkey)
Haluk SEZGIN (Turkey)
Mai SHAIR (Jordan)
Yaacov SHAFFER (Israel)
Ram SHOEF (Israel)
Giambatista DE TOMMASI (Italy)
Shan TSAY (Jordan)
Fandi WADEK (Jordan)
Eyal ZIV (Israel)

Scientific Committee of the RehabiMed Project:
Brigitte COLIN (UNESCO)
Josep GIRALT (IEMed)
Paul OLIVER (Oxford Brookes University)

French translation:
Michel LEVAILLANT

English translation:
Elaine FRADLEY
ADDENDA

Spanish translation:
Inma DAVILA, Amélia MARZAL

Arabian translation:
Mohamed ISMAIL

Illustrations:
Joan CUSIDÓ

Cover illustration:
Fernando VEGAS, Camilla MILETO

Photographic material:
RehabiMed, CORPUS and CORPUS Levant teams.
Other sources are indicated with the photo.

Graphic design:
LM.OG : Lluis MESTRES

Website:
www.rehabimed.net

© 2007 Col·legi d'Apelladoris i Arquitectes Técnicos de Barcelona pour le consortium RehabiMed
Bou Pastor, 5 – 08021 Barcelona, Espagne
rehabimed@apabcn.cat
ISBN : 84-87104-75-4

RehabiMed wish to encourage the reproduction of this work and the diffusion of its contents, with due mention of its source.

This project is financed by the Euromed Heritage programme of the European Union and by the Agencia Española de Cooperación Internacional (AECI).

The opinions expressed in this document do not necessarily reflect the position of the European Union or its member states.
Preface

The first Euromediterranean Conference of heads of state in 1995 saw the launch of the Barcelona process, an ambitious initiative ratified in 2005 at the Barcelona +10 Summit. The priority objectives are intended to seek sociopolitical, economic, cultural and environmental synergies from a regional and mutual development viewpoint. It was within this context that the Euromed Heritage Programme emerged in 1998, to contribute towards the improvement and protection of the diverse heritage shared by the different Mediterranean countries.

Traditional architecture, as an essential part of the cultural legacy generated by the collective imagination of the Mediterranean, plays an important part in the actions carried out by Euromed Heritage. In their first years, CORPUS and CORPUS Levant carried out an enormous task cataloguing and analysing the characteristics and typologies of traditional Mediterranean architecture, identifying the problems presented and suggesting the best alternatives for preserving it. RehabiMed wanted to continue this stage of analytical study to develop the essential ideas arising from the needs and urgent requirements detected by these projects – promoting effective, respectful rehabilitation.

Today, in a globalised world, where economic and cultural uniformity mark the development criteria to be followed based on standard patterns, RehabiMed’s proposal is even more meaningful. Rehabilitation counteracts the idea of globalisation, and regional wealth, cultural diversity, different ways of life and particular local features become essential elements to be preserved.

There are many public and private initiatives aimed at recovering constructed heritage; some are oriented towards singular, monumental heritage, which we call Restoration, and others, as is the case with RehabiMed, are directed towards more modest, more abundant heritage with a greater presence in the territory, such as traditional architecture in historic town centres, rural villages and dispersed throughout the territory. This is what we call Rehabilitation, always carried out to provide buildings – the majority of them without any kind of heritage protection – with a use. This activity involving action on what has been built presents a wide diversity of situations, if we look at the Mediterranean sphere. In European countries, rehabilitation activity represents almost 50% of total activity in the sector, while in the countries of the south and east of the Mediterranean basin, this activity does not amount even to 10% of activity in the sector, despite its importance concerning economic development and the social cohesion of the population.

RehabiMed’s aim is to reinforce rehabilitation activity and maintaining traditional Mediterranean architecture as a factor in sustainable (social, economic and environmental) development. Achieving this objective will allow us to move forward with two historical challenges that may appear contradictory but from our point of view are perfectly compatible and complementary: firstly, contributing towards improving the living conditions of residents, who are the people who give meaning and life to this heritage; and, secondly, contributing to preserving the historical and cultural identity of Mediterranean peoples.

To achieve this aim, RehabiMed’s approach has been to work in three directions. Firstly, we have developed some strategic and methodological tools orientated towards rehabilitation; alongside these, we have carried out various publicity actions and training for professionals in the spirit of the content of the tools developed; and, finally, we have launched four pilot operations with real rehabilitation work to test, experiment and demonstrate the importance, possibilities and positive effects represented by good rehabilitation policy.
They have been three years of hard work, constructive debates and experiences shared with experts, with students and, above all, with the population directly linked to our actions, which has allowed us to meet the objective we initially set. We believe that the results are excellent and that we have created a good starting point for rehabilitation to get off on the right foot, giving meaning to the tools created, the training given and the experiments carried out.

I am delighted to present the first volume of our methodological work, the result of the effort of more than 150 experts from different professional spheres in 15 countries. The texts in this publication contain the RehabiMed Method for rehabilitation of Traditional Mediterranean Architecture, which have been considered and drawn up at length to respond to the concerns of our collaborators and experts. In addition, the publication develops the different points put forward by the RehabiMed Method to provide guidelines on specific proposals, to facilitate their application and to show different situations sharing very similar forms of action in the rehabilitation of the regional and urban heritage of traditional architecture. All this should serve politicians and officers of the different administrations to make it easier for them to generate and develop their initiatives to promote rehabilitation from a very broad frame of reference, raising the awareness of the population and getting it to take an active part in decision-making.

Xavier Casanovas
RehabiMed Project Manager

Barcelona, 30 June 2007
RehabiMed Method
Traditional Mediterranean Architecture
II. Rehabilitation. Buildings

Preface

Introduction
Traditional Mediterranean Architecture 9
A changing world. Architecture under threat 11
Rehabilitating Traditional Mediterranean Architecture 13
The RehabiMed Method on the scale of the building. The Guide and its constituent tools 14

Part 1.
An integrated approach to the building

I / Objectives of the Guide 17
II / The initial agents in the process 18
III / The phases of the Guide 19

I. Knowledge
1. Preliminaries 21
 Decision to take action / Interview with the client 21
 Preliminary diagnosis 22
 The preliminary diagnosis report 22
2. Multidisciplinary studies (analysis) 23
 Establishing of provisional hypotheses 23
 Programme of multidisciplinary studies 23
 Social aspects 23
 Historical aspects 24
 Architectural aspects 25
 Construction aspects 27

II. Reflection and the project
3. Diagnosis (synthesis) 28
 Critical evaluation of studies 28
 Confirmation of hypotheses 30
 Writing a report 30
4. Reflection and decision-making 31
 Feasibility 31
 Confirmation of criteria 33
 Decision-making 33
5. Project 34
 Outline proposals 34
 Project 34
III. The work
6. Rehabilitation
 Tender action
 Obtaining the building permit
 Carrying out the work
 Handover of the work

IV. Lifespan
7. Maintenance
 Publicizing the building’s values among the community
 Choice of the model of maintenance
 The ‘identity card’
 Maintenance work according to a timeframe

Part 2.
The RehabiMed tools.
An aid to the rehabilitation of traditional buildings

I. Knowledge

<table>
<thead>
<tr>
<th>Tool 1. Knowledge of traditional architecture as a basis for rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Mediterranean Architecture. Territory, landscape and traditional</td>
</tr>
<tr>
<td>architecture. José Luis García Grinda</td>
</tr>
<tr>
<td>Traditional Mediterranean Architectures: collective values. Michel Polge</td>
</tr>
<tr>
<td>The Social and Cultural Values of Cultural Heritage in Palestine: Whose values, the practitioners or the owners? Suad Amiry, Farhat Muhawi</td>
</tr>
<tr>
<td>Architectural heritage: adaptation, use and maintenance. Abdelaziz Badjadja</td>
</tr>
<tr>
<td>Bioclimatic values in the rehabilitation of Traditional Mediterranean Architecture. Xavier Casanovas, Ramon Graus</td>
</tr>
<tr>
<td>Traditional architecture and climate in Tunisia. Radhia Ben M’barek</td>
</tr>
<tr>
<td>A tool to develop the use of solar energy in Mediterranean basin:</td>
</tr>
<tr>
<td>the European Solar Radiation Atlas (ESRA). École des Mines de Paris</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool 2. Starting with a precise preliminary diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steps for an engineering (and non-structural) survey in pre-diagnosis phase. Yaacov Schaffer</td>
</tr>
<tr>
<td>Support material for the preliminary diagnosis stage. Ramon Graus</td>
</tr>
<tr>
<td>The preliminary diagnosis - the Cyprus experience. Yiola Kourou</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool 3. Overall knowledge of the building</th>
</tr>
</thead>
<tbody>
<tr>
<td>The programme of studies. Fernando Vegas, Camilla Mileto</td>
</tr>
<tr>
<td>Historical studies and archaeological interventions: Tools for the knowledge of Traditional Mediterranean Architecture. Abdellatif Marou, Jordi Ortega, Montserrat Villaverde</td>
</tr>
<tr>
<td>Archaeology as a tool for finding out about the building. Evi Fiouri</td>
</tr>
<tr>
<td>Applying the archaeological method to Lebanese architecture. Yasmine Makaroun Bou Assaf</td>
</tr>
<tr>
<td>A comprehensive understanding of the building. José Luis González Moreno-Navarro</td>
</tr>
</tbody>
</table>
Architectural analysis of buildings. Typologies in Cyprus. Eliana Georgiou 142
Thermal comfort in existing homes. María López Díaz 145
Acoustic comfort in existing homes. Cristian Thiriot 153

Tool 4. Making the graphic survey of the building
Preliminary reflections on the graphic survey of vernacular heritage.
Santiago Canosa Reboredo 161
Pointers for drawing up a good survey. Michel Daoud 165
Graphic Survey. The Cypriot experience. Eleni Pissaridou 169
Stratigraphic analysis of architecture and its application to traditional
architecture. Camilla Mileto 172
The colour study, the first step in rehabilitating a façade. Ramon Graus, Cristina Thió 179
The applications of digital photography. Joaquín Montón 189

Tool 5. Understanding structural damages
Structural damages in Traditional Mediterranean Architecture. César Díaz 195
Seismic risk in the traditional architecture. Giambattista De Tommasi 208
The European-Mediterranean Seismic Hazard Map. María José Jiménez 213
The seismic behaviour of traditional constructions with
masonry walls. Pere Roca Fabregat 216

Tool 6. Understanding the processes of degradation of the materials used
Identifying types of damp: the causes and the lesions they produce.
Soledad García Morales 225
Degradation of Building Materials (stone, earth, timber). Maria Philokyprou 236
Various types of scientific techniques used to identify degradation
mechanisms of stone. Mustafa Al-Naddaf 242
Agents in timber degradation. Joaquín Montón 245

II. Reflection and the project

Tool 7. The criteria of intervention
Criteria of intervention in traditional architecture. Fernando Vegas, Camilla Mileto 255
Technical issues in housing rehabilitation. Michel Polge 265
Choosing the project direction. José Luis González Moreno-Navarro 267
The innovation value for quality in the traditional architecture
rehabilitation. Fabio Fatiguso 273
Notes on the rehabilitation and reuse of traditional and historical
architectural heritage. Carlo Atzeni 281
Rehabilitating and building using traditional materials. The Egyptian
experience. Bernard Maury 287
The dilemma criteria: The point of view of heritage value. Irene Hadjiisavva-Adam 290
Systems and equipment installations challenges. Athina Papadopoulou 292

Tool 8. Rehabilitation techniques: reinforcing structures
Rehabilitation of structural elements in Traditional Mediterranean
Architecture. César Díaz 297
Reinforcement and treatment of foundation.
Egyptian experiences. Wahid El-Barbary 309
Technological and structural aspects in the conservation of Old Akko.
Ofer Cohen, Yael F. Na’aman 312

Walls strengthen and treatment: the Egyptian experiences. Wahid El-Barbary 319

Seismic improvement and conservation of structural features. Giambattista De Tommasi 322

Reinforcing traditional Algerian structures to resist earth movements. Abdelaziz Badjadja 325

Restoring traditional timber constructions: the Turkish experience. Banu Çelebioglu 327

Tool 9. Rehabilitation techniques: consolidating materials
Renderings: consolidation, restoration or replacement. Patrice Morot-Sir 333
The treatment of damp in traditional architecture. Soledad García Morales 339
Consolidation of the sandstone monuments of the world heritage site of Petra. Ziad Al-Saad, Fandi Waked 345
Treating and protecting timber. Joaquín Montón 350
Methods and substances for treating and repairing the wooden elements, the Egyptian experience. Wahid El-Barbary 355

III. The work

Tool 10. The reality of on-site work
On-site reality. José Manuel López Osorio 361
Job creation through restoration towards a sustainable community. Khaldun Bshara 376
Some observations about Project Management. Athina Papadopoulou 379

IV. Lifespan

Tool 11. Maintenance of traditional architecture
Support material for building maintenance: the “identity card”. Ramon Graus 385
Traditional Mediterranean Architecture

RehabiMed uses the term traditional architecture to refer to everyday architecture that is alive because it is inhabited, essentially civilian, domestic and of pre-industrial construction. It is a form of architecture built using local resources, which covers materials, techniques and the skills of its constructors, and it is the fundamental expression of the culture of the different communities and their relation with nature and the landscape.

It is an architecture that covers different forms of grouping and the scattered habitat with all its auxiliary constructions, not forgetting the more modest elements (fountains, paths, etc.), which, altogether, form the traditional Mediterranean landscape.

RehabiMed focuses broadly on this architecture, including both the rural habitat, fundamental to the humanization and structuring of the territory, and the city, the clear expression of life in community and the optimization of resources and human relations, going beyond the filters of highbrow architecture to incorporate all the values of more modest forms of architecture.

Rural architecture is primarily linked to systems of agricultural and livestock production, which, beyond a simple presence in a bygone landscape, plays a vital role in understanding the processes that have produced today's landscape, the result of a social and a natural history. Rural architecture has always played a salient role as an element that structures the landscape in which buildings, crops and nature are in perfect balance, the result of a continuous process of change and transformation, a socio-environmental reality generated jointly by biophysical and socioeconomic factors throughout history. The traditional rural habitat takes the form of a heterogeneous variety of built typologies which may be scattered or form small settlements. It is also accompanied by a large variety of auxiliary elements and constructions that are vital to the domestication of the territory (cabins, dry-stone walls, ovens and kilns, caravanserais, fountains, wells, mills, stables, granaries, etc.), and infrastructures (canals, paths, irrigation channels, etc.) which are the result of the historical interaction between natural resources and human ways of appropriating them that bear witness to the coherent hybridization of the biophysical factors of a region and the socioeconomic factors of the community that inhabit it.

Urban architecture, on the other hand, is built in the context of a city or urban settlement, being the expression of a more complex form of community dwelling, in which artisans and traders predominate over the land-related trades and where ‘the new needs and forms of society find their place’ (Mumford, 1961). The urban settlement, though also originally linked to the rural space and to the need to commercialize farming surplus, appeared as a structure to dominate the territory, defined by Braudel (1968) ‘more than by its walls or the number of its population, by the way in which it concentrates its activities on the most limited surface area possible’. The urban habitat covers a large typological range, derived to a large extent from geographical differentiation and from its origin and historical evolution. This historical and morphological diversity not only translates as buildings, construction procedures or materials used, it is also the configuration of the urban form, expressed in the way of structuring and considering collective space (streets, squares, etc.), of organizing constructions and uses which, in the rural world, are scattered (sanctuary, fountain, fortress, etc.), of relating private architecture and public space, developing a greater variety of residential typologies that reflects more complex social structures, in the uses of buildings, in the singularity of its infrastructures (market, school, etc.), and so on. These settlements, which in days gone by exclusively configured the city as a consequence of its growth and transformation, now form an integral part of the contemporary city, where they play the role of historical nucleuses. It is, then, the form of traditional architecture that humankind used to settle and construct its habitat in the territory around the Mediterranean Sea, a palimpsest permanently rewritten by the relations between people and their surroundings, and which has today become cultural landscape and collective imaginary.
Introduction

Qalaat al Manika, Syria

Hacienda Algarrobo, Malaga, Spain

Rovinj, Croatia

Lurcia, Italy
A changing world. Architecture under threat

The inventories drawn up as part of the CORPUS and CORPUS Levant (EUROMED Heritage I) projects showed in 2002 the far-reaching transformations and pressures to which architecture, landscape and traditional territory are subject. Today, traditional surroundings are in a dramatic situation throughout the Mediterranean Basin, reduced to a continuing loss of their social and cultural character, threatened by intense degradation and constantly on the retreat. Likewise, the breakdown of the traditional world and the tendency to cultural homogenization as a result of globalization have brought about disregard for much of this architecture, often considered to be a symbol of poverty with values and qualities that are far removed from the mediatized concept of modernity.

Pressure on the traditional habitat began with the process of industrialization, though it was much accentuated by the modern movement and urbanism in the early 20th century, seeking new models of dwelling and building cities that could overcome the deficiencies of traditional settlements; it went as far as denying all functional, social and even aesthetic values, and radically placed ‘the new’ before ‘the old’. This process emerged at different times according to the country in question and whether we refer to the urban or the rural space.

Today, in the era of the ‘global village’, when the metropolitan industrial city is turning into a diffuse metapolis and the borders between country and city are becoming increasingly hazy, the pressure on this architecture and the population that it houses is even greater.

In the rural environment, many villages are becoming depopulated due to the lack of alternatives for development, and others are subject to violent transformation under the pressures of property or tourism-related speculation without the necessary urban planning. This contemporary urbanism is upsetting the historical balance between humankind and nature, and converting the rural landscape into a landscape without activity, where traditional architecture loses its meaning and original function, and is reused and transformed.

In urban environments, the ‘historical nucleuses’ are affected by different problems according to each historical and regional circumstance, which we could summarise according to four main vectors of pressure, sometimes complementary or simultaneous, and with differing degrees of influence: nucleuses in the process of overpopulation due to migration (south-north or country-city) with the subsequent physical (over-occupation and modification of dwelling), social (constitution of ghettos, insecurity, etc.) and environmental (insalubrity, lack of comfort, pollution) deterioration of the urban environment; nucleuses in the process of depopulation due to the abandonment of the historic fabric for the city, with the subsequent loss of social values and the deterioration of buildings and architectural heritage; nucleuses affected by heavy-handed urban renovation work (demolition of heritage, destruction of the historic fabric with the creation of new expressways, incoherent insertion of new architectures), and, finally, nucleuses affected by processes of urban reinvestment, in which we can distinguish three main processes: the development of tourism, tertiarization (especially in historic centres) with the possible loss of the residential function, and gentrification (the installation in a run-down neighbourhood of residents from a
high-income bracket), all processes that can have a counterproductive effect in social terms. Institutions such as the UNESCO and ICOMOS have issued repeated alerts about the loss of this heritage. In this respect, mention should be made of the recommendations of the International Charter for the Conservation of Historic Towns and Urban Areas (Washington Charter) of 1987 and the Charter on Built Vernacular Heritage (1999). Both charters, in addition to providing criteria for intervention, stress the need for long-term action in the form of education and sensitization measures, involving the promotion of training and specialization programmes in areas of preservation of traditional architecture, aimed at technical professionals and politicians, who should head policies for the assessment and rehabilitation of this heritage, and seeking the complicity of the population, an active protagonist and participant in this shared legacy.

It is in this context that the RehabiMed project proposes a series of measures to encourage the rehabilitation of this architecture on the basis of sensitization and training.
Rehabilitating Traditional Mediterranean Architecture

In its global dimension, traditional habitat has a great deal to contribute to a context of sudden changes and urbanization that is neither sustainable nor environmentally friendly, and is marked by a need for the reorientation of urban policies in order to reduce conflicts between humankind and nature, improve quality of life, encourage basic values of community life and call for the recovery of the existing territory and recognition of cultural diversity.

For RehabiMed, the concept of rehabilitation covers a broad range of action with a view to recovering and updating a lost or damaged function—in this case, dwelling. On the basis of present-day concerns, rehabilitation means improving the action of dwelling by seeking a point of balance between technical aspects, the preservation of heritage values and criteria of social justice, economic efficiency and preservation of the environment (the three mainstays of sustainability).

RehabiMed continues the task begun by the European Charter of Architectural Heritage and the complementary Amsterdam Declaration, both dated 1975 and promoted by the European Council. These documents put forward the concept of “integrated conservation” for the recovery of run-down historic centres, based not just on the restoration of monuments but also on the promotion of actions to rehabilitate the fabric of dwellings and social measures.

RehabiMed therefore proposes a methodology that addresses the rehabilitation process on the basis of integrating traditional space into a wider territorial context; from the global viewpoint of a multisectoral, economic, social and environmental approach; that is driven by a desire for coordination and calls for consensus of action between the various agents; that is flexible, due to the need for continual adaptation to changing realities; and, essentially, non-dogmatic, not claiming to produce single solutions to the problems of the traditional habitat in the Mediterranean, seeking instead solutions that adapt to the conditioning factors and specificity of each local context.
The RehabiMed Method on the scale of the building. The Guide and its constituent tools

Whereas the first volume of this publication is devoted to the RehabiMed Method and its intervention on the scale of villages, towns, cities and the territory, volume two is its complement, focusing on the scale of the building. It is, then, a text aimed at the architects, engineers and builders who design, direct and carry out rehabilitation work on traditional buildings in the Mediterranean.

Rehabilitation of a building calls for an overview of the territory in which it is set and an understanding of its relation with the territorial and urban context. This is why the RehabiMed Project insists on the need to apply this Guide in the framework of the overall rehabilitation method outlined in the first volume of this publication, which sets out a series of shared, coherent criteria for intervention in order to address the complex problems involved in these situations.

This second volume is also divided into two different parts: a methodology, which we refer to as the Guide, establishing procedures for the successful undertaking of rehabilitation work, and a practical part containing specific tools for concrete problems.

The first part is the product of the joint work of a network of Mediterranean experts who, in the first year of the RehabiMed Project, drafted the basic principles and procedures of the Guide. The texts in the Guide have been debated at length after presentation at the 2005 RehabiMed Symposium in Marseilles, and constituted the conceptual bases for various training seminars in 2006 and 2007 (Nicosia, Cairo, Kairouan, Marrakech).

The second part, comprising practical tools, was written by individual specialists in a variety of fields with a view to providing elements of support for the various phases of rehabilitation work. It aims to cover a broad range of problems and sensibilities which, in our opinion, characterize the Mediterranean basin.

It is true that strict compliance with a guide of this nature calls for a high degree of commitment and may raise issues that are difficult to address according to the reality of a given country and place, but we are convinced that setting high standards will, in the long term, stimulate the quality of the rehabilitation of our traditional architecture and contribute to its preservation.
First part

The RehabiMed Guide to the rehabilitation of traditional buildings

An integrated approach to the building
Objectives of the Guide

With the aim of rehabilitating traditional architecture in a conscious, orderly and adequate manner, this document offers the architect/engineer a guide to follow during the rehabilitation of traditional buildings.

The way we have chosen, though not necessarily the only one, first of all defends the need to preserve the fact of ‘dwelling’, both in the sense of improving the living conditions of inhabitants and preserving the meaning of this architecture within the community. Secondly, it sets out to recognise traditional architecture as part of the Mediterranean cultural landscape. Its rehabilitation with a minimum rigour represents the transfer to future generations of heritage values (historical, artistic, memorial, testimonial, etc.).

We have to point out that acting according to these principles calls for an arduous task of sensitization: of the technical professionals, because most of their university training is based on the construction of new buildings using reinforced concrete and industrialized techniques that are hard to reconcile with this architecture, and of the community, because it is vital for it to recognise the testimonial value of its architecture. To this end, we propose mechanisms for the community’s active participation in decision-making.

It is also a guide that sets out to be, as far as possible, ‘scientific’, ‘objective’ and ‘precise’, and one that places a great deal of emphasis on the initial phases of diagnosis and reflection prior to the project; it is a guide that disagrees with interventions in built environments carried out without a thorough knowledge of the building and its circumstances, on the basis of the fact that ‘this is how it’s always been done’; a guide that mistrusts the excesses produced by a blind faith in new technologies applied without criteria; and, finally, a guide that aims to cut back the habitual lack of economic control of rehabilitation work.

It is quite true that for each specific building it is necessary to find the scale and scope of each of the stages proposed. The RehabiMed guide therefore presents a general outline of maxims to be adapted to each specific case. The guide takes as its starting point the premiss that if we do not know, we are unable to reflect and, therefore, we cannot rehabilitate. It therefore proposes four divisions of the process (knowledge, reflection and the project, the work, lifespan) within which the different stages of work are carried out.

The aspects of architecture and construction proposed in a guide of this kind for the rehabilitation of buildings might seem to be well known to all, but the very fact that they are known often leads to false premisses in the various stages, and the quality of rehabilitation work tends to suffer.

To close this introduction, we would just like to remind that this guide acquires its maximum value when it is applied in a broader area of action, whether on the scale of the district, the town or the territory, and as part of a coordinated action plan as proposed in the RehabiMed Method for the rehabilitation of traditional Mediterranean architecture.
The initial agents in the process

The foremost agent in any operation to rehabilitate a building is the owner, who may be public or private, individual or collective. In all cases, the owner represents the soul of the operation, the seat of the desire to improve a home, do business, simply keep a building standing, share in the collective enthusiasm of improving a street, etc. It is also important to remember that some or all of the dwellings in an apartment building may be rented, and the needs and opinions of the tenants therefore have to be taken into account.

On the other side of the relation, the architect/engineer is the professional qualified to direct the various stages of rehabilitation with the collaboration of a multidisciplinary team. This guide uses the term architect/engineer, though in the Mediterranean context we find various professionals who are qualified, totally or partially, for this kind of work, such as the architect, the architect-engineer, the building engineer, the technical architect, etc. However, the complexity of careful rehabilitation work means that they are particularly trained and sensitized to these issues, as well as being open to the collaboration of experts from different disciplines (historians, anthropologists, restorers, topographers, etc.).

The third agent in the process is the builder or contractor. The role and capacity of this figure is different all over the Mediterranean. In some areas, traditional know-how has completely disappeared, whereas in others it is still possible to build as it was done in the past. By protecting traditional Mediterranean architecture, we are also protecting these crafts.
The phases of the Guide

RehabiMed observes how, in practice, the client decides on a series of improvements or changes to be made to a building and immediately undertakes rehabilitation work. In some cases, the client will consult an architect/engineer, but the result of rehabilitation is the reflection of the immediate needs of the moment. Some would argue that it has always been so, that this is an ‘architecture without architects’, but we all know that the organic growth of pre-industrial architecture responded to techniques and conducts that were distilled by tradition and carried out by true professionals, experienced workmen, whether master builders, masons or maalem, who all form part of a world that has practically disappeared. The proposal of the systematic participation of university-trained technical professionals may seem a frankly technocratic alternative, but we think it responds to the reality of the far-reaching social changes in the Mediterranean basin. All of these technical professionals have to be aware of the inevitability of most of these changes and the fact that, as Kevin Lynch reminds us, they will probably only be able to ‘manage transitions’.

As a rough guide, we might say that, while in general practice the process comprises just two phases (the decision to take action and the work itself), RehabiMed proposes a sequential procedure, a process in four consecutive phases that begins with the decision to act:

I. Knowledge: any intervention must be preceded by knowledge of the building and its occupants. Stage one (1. Preliminaries) includes the client’s decision to take action but takes the form of a preliminary diagnosis that makes an initial, objectivevalorization of the proposal and the object of intervention (the building and its users). The complexity of the building usually calls for a second stage of knowledge (2. Multidisciplinary studies (Analysis)), based on meticulous disciplinary research to analyse social, historical, architectural and construction aspects.

II. Reflection and the project: once knowledge of the building and its users has been acquired, we can go on to reflection, which represents a third stage, 3. Diagnosis (Synthesis), that synthesizes the information collected during the previous phase. This stage individually explores problems and their
causes, and produces an overview of the building’s potentials and deficits. The fourth stage (4. Reflection and decision-making) picks up the client’s ideas for rehabilitation work and seeks to reconcile them with the reality of the building, its heritage values, economic possibilities for investment, etc. At this point the criteria of intervention are confirmed (how to conserve, to what extent to transform, etc.), and they must therefore be guided by a solid professional ethic. And, finally, on the basis of sound criteria, it is now possible to move on to the fifth stage (5. Project) and the drafting of the project document that enables the contracting, constructing and control of rehabilitation.

III. The work: Having passed through these two major stages, phase six (6. Rehabilitation), will be far more precise, preserving the values of the building, adapting better to the client’s needs and, though apparently contradictory, at a lower economic cost because the uncertainties surrounding work have been better defined. But in order to guarantee the quality of physical rehabilitation work, the contracting of the builder and his collaborators is vital, be they artisans, restorers or other specialised companies.

IV. Lifespan: it would seem that once rehabilitation of the building is complete, the process is at an end, but we also include a seventh and final stage, 7. Maintenance, which comprises minor cleaning work, repairs and renovations carried out according to a timeframe throughout the building’s lifespan until future rehabilitation (a major operation that will restore the building to the standards of the time). Particularly important in this stage are periodic inspections to detect deficits and new needs before the building begins to decline.
1 Preliminaries

This first stage brings together all the necessary contacts to begin a building's rehabilitation process, once the client has decided to do so. The themes addressed are very varied in order to allow a sufficiently open initial approach to the general framework of the operation. This stage turns around what is generally called the preliminary diagnosis, a phase of orientation for the client.

Decision to take action / Interview with the client

This stage represents an open dialogue between the owner and the architect/engineer. The architect/engineer has to identify the client's needs and desires, and detect possible ways of putting the idea into effect. It is important to bear in mind that the initial reasons for a commission may differ from the final decision. The owner will often consult an expert for a minor problem (a crack, damp, etc.), issues of comfort, municipal conservation requirements, etc., but it is the architect/engineer who has to be capable of orienting the owner in order to rationalize the
intervention and perceive the more determinant needs which may be different to the owner’s initial concerns. The owner may also have decided on rehabilitation of the building for purposes of financial investment, and in this case the architect/engineer has to be a good advisor with regard to the legal aspects and economic cost of the operation.

Preliminary diagnosis

The key point in this first stage is the preliminary diagnosis. This involves an initial global approach to the building, its values (architectural, historical, etc.) and its problems (related to construction, habitability, etc.) by means of a preliminary inspection of the building. This first visit takes the form of a visual inspection in which the architect/engineer’s experience plays a fundamental role. A visit to the whole building will be conducted in an attempt to recognise the construction system used, its characteristic architectural values, the pathologies affecting it, associated social problems, etc. Particular attention will be paid to the load distribution and water drainage. All of this information can be compiled in one or various systematized inspection sheets. This is the case of the MER in France and Switzerland, and the Test Mantenimiento in Spain, etc. Some of these inspection methods have recently incorporated data associated with the building’s energy behaviour and other environmental parameters. In situations of major fragmentation of ownership of the building, a series of interviews is required to guarantee the participation of all owners and users of the building.

Alongside the inspection, the architect/engineer has to investigate the building’s legal status with a view to finding out the urban planning obligations and restrictions to which it is subject (permitted urbanistic use, level of listing, legal protection imposed by urban planning, mortgages, censuses, etc.) and the grants that may be applied for in the event of rehabilitation. The degree of heritage protection of the area and/or building is generally decisive to the operation. Initial contact with the corresponding authorities (municipality, regional administration, etc.) may help to clarify this context. It is also necessary to detect the legal conditions of the building’s occupants: low-rent tenants, occupied dwellings, sublet tenants, etc.

The preliminary diagnosis report

After inspection and legal consultations, the architect/engineer has an initial understanding of the building and will have detected its deficits and potentials. The preliminary diagnosis report may clearly include in summarised form the data collected, and must evaluate the building’s state of conservation and set forward recommendations. The expert may, then, from the start of the process, inform the owner of the possibilities of rehabilitating the building and technical and economic restrictions. At this point, the client has to decide whether to continue with his or her initial ideas or reformulate the intervention. This report may of course take the verbal form of an interview, but it is always best to make a written record, as the client may wait several months to make a decision or consult another expert, and the written word is always more precise.

If the building is in a good state of repair and no major changes are foreseen, we can go straight on to stage 7 (7. Maintenance) and propose a preventive maintenance plan. However, 90% of cases call for a second stage of multidisciplinary studies before starting rehabilitation.
Multidisciplinary studies (analysis)

This stage of the process consists of the systematic collection of information in all the fields requiring research in order to produce full knowledge of the object of study. Conducting these multidisciplinary studies successfully depends on the training of the expert responsible for carrying out or directing them (the corpus of knowledge of the technical expert may, in the simplest cases, be concentrated in one person with, at some points, the consultation of various specialists). We cannot trust exclusively to our own experience and intuition, which, though very necessary, must be accompanied by the systematic collection of information, which, in some cases, will be backed by specialized tests.

Establishing of provisional hypotheses

The multidisciplinary studies stage is fundamental to gaining sufficient knowledge of the building and its context before intervention begins. By this token, it is advisable to set the objectives and some initial hypotheses in accordance with the information collated in the preliminary diagnosis report and to verify them as the studies advance.

Programme of multidisciplinary studies

These hypotheses will be taken as a basis to plan a feasible, coherent study campaign using the means available. At this point, the architect/engineer must be fully aware of the scale of the intervention (a small house, a large building containing many dwellings, a listed building of great monumental value, etc.). The work may also be staggered to allow subsequent verifications to be made of initial ones. By this point it should be clear who the director of all the studies is to be.

Social aspects

Depending on the type of rehabilitation, socioeconomic aspects may be crucial to the intervention. The basis for study tends to be a sociological survey to detect family units and possible problem situations (overcrowding, marginalization, unemployment, abandonment, etc.) and their relation with the district as a whole. According to the type of operation, the possibility of provisional or
definitive rehousing of inhabitants with very close links to the municipality should be organized. Furthermore, in the world of traditional architecture, anthropology may provide us with valuable data about the social significance of the house, use of spaces, customs, etc.—all the intangible aspects related to the community’s perception of its architecture. In the case of constructions that are as fragile as traditional architecture, anthropological studies should be promoted to document forms of dwelling that are in danger of disappearing. The fact that many dwellings in traditional neighbourhoods are now inhabited by people emigrating from other traditions implies the need for knowledge of both cultures and the possibility of combining them harmoniously.

Historical aspects

Architecture, and this also applies to the traditional form, is valued when it can be recognised as part of a tradition. The introduction of historical studies always helps to set far more solid criteria of intervention. First of all, the historical method explores documentary sources (notary archives, family archives, old photographs, past projects for the building) in order to compile data that helps to understand the building and its transformations. At the same time, the building itself is a splendid historical document that can be carefully studied as material culture using the archaeological method that is generally conducted alongside the graphic survey of the building (test drilling in walls, analysis of construction materials, stratigraphic analysis of the building, etc.). Another historical discipline, oral history, plays an important role in the rehabilitation of traditional architecture. Asking questions of the elderly may produce very useful data about the building and also about traditional construction techniques that are disappearing.

Architectural aspects

Without a good graphic survey of the building it is difficult for the architect/engineer to understand it and therefore to produce a project in keeping with reality. The level of complexity of the building and planned interventions will suggest the most suitable...
type of plan and its degree of precision. The type of survey may be manual (using a tape measure), topographic or photogrammetric. In all cases, all efforts must be made to produce a precise plan, since it will provide the basis for all subsequent work.

At the same time, good photographic or video documentation is extremely useful, since it retains elements that may go unnoticed at first sight.

A graphic plan is not only an abstract measuring operation. Drawing the building is the best way to discover and understand it. An important part of the plan is recognition of the building’s architectural values and the graphic plan of materials, construction techniques and their pathologies from a construction viewpoint.

The way a 21st-century architect/engineer sees traditional architecture is inevitably a present-day viewpoint marked by present-day concerns. It is important to take into account the fact that the very idea of cultural heritage is a cultural construction of the last 200 years. In this respect, the value and authenticity of traditional Mediterranean architecture, in all its diversity, cannot be valorized by a fixed criterion. The necessary respect for the cultures of the Mediterranean basis calls for an understanding of architecture in its tradition.

An evaluation of the values and transformations of the traditional dwelling can be represented by the layers of finishes on the dwelling’s surfaces (floors, ceiling and walls). (Dwelling in Tinerhir Ksar, Morocco – III Atelier de Réhabilitation des Kasbahs du Sud de l’Atlas)
The inspection will involve an unbiased study of the building's architectural values (integration in the place, spatial configuration, singular structure, type of ornamentation, etc.), attempting to avoid fragmentary appreciations and seeking the unitary logic that produced the architecture.

During this stage we recommend consultation of the completed studies about the building's typology and, in some cases, the carrying out of further studies about singular aspects of the building. Traditional architecture is particularly characterized by the surfaces of its walls (colour, texture, irregularities, etc. of façades and interiors), making studies of colour and applied decoration very valuable. This will involve multidisciplinary participation, because the focus on the use of colour or applied paint calls for a study of the history, art and construction of traditional techniques.

It is also important to remember that though change is slow in the pre-industrial world, a traditional building grows and is modified in keeping with the needs and means of each period. It is therefore advisable to study the building's architectural transformations, once again with recourse to a historical study, in order to understand its present-day configuration.

This stage will also require detailed consultation of the building's legal and urbanistic framework. In the case of listed buildings, their records will be studied in order to understand why they are partially or completely listed.
Construction aspects

This stage includes the identification of all the building’s physical and construction elements, and observation of its lesions. Here we should point out that the training of architects and engineers since the 19th century has centred on the study of construction by subsystems (foundations, walls, floors, facings, etc.); in traditional architecture the building was constructed as a whole, and it is important to address it from this global viewpoint. This stage therefore calls for an architect/engineer who is familiar with the traditional construction methods of the region, with a solid scientific and technical training in the pathology of traditional buildings.

The approach to problems has to be as scientific as possible: detection of lesions, a preliminary hypothesis as to their causes and verification of these hypotheses. The architect/engineer will also have access to a series of experts (chemists, geologists, biologists, etc.) and tests (on site and in the laboratory) that will allow him/her to identify materials, possible alterations, monitoring of fissures, wood boring insect attacks, etc.

It is particularly important to evaluate the building’s structural safety in order to avoid accidents. This involves soil investigation (by means of a geotechnical report if necessary), an analysis of the structural coherence of the whole and the structure’s load capacity. This evaluation is particularly essential in seismic areas, where a careful study of the building’s vulnerability is necessary. This is a particularly conflictive issue, since structural safety standards are designed for new constructions of steel and reinforced concrete, and it is practically impossible to assimilate them to the traditional reality. The dilemma of simultaneously conserving and making a building secure can be nuanced by knowledge of the building’s structural behaviour over long periods of time.

When approaching the rehabilitation of a building, we recommend introducing criteria of sustainability and environmental protection. This involves analysing the building’s water and waste cycles and energy consumption, and studying winter and summer comfort levels. Mediterranean construction tradition has countless bioclimatic solutions that should not be undervalued due to ignorance of them during an intervention.

This phase should not overlook verification of the building’s connectivity (state and position) with basic infrastructures (drainage, drinking water, electricity, telephone networks, etc.) in order to foresee from the start the effective possibilities of connection, which in some cases would call for work that is simply unfeasible.

An evaluation of the gravity of a building’s lesions calls for detailed knowledge of how the building was constructed. (Thessalonica, Greece, 1997 – Manos Anagnostidis, Maria Dousi, Olympia Hatzopoulou)
II. Reflection and the project

3 Diagnosis (synthesis)

Critical evaluation of studies
The diagnosis stage involves a task of synthesis and critical reflection that is based on the multidisciplinary studies carried out during the previous stage. This evaluation has to lead to unitary planning to avoid excessively fragmentary results due to limitations on the material available.

In order to organize and establish information it is always necessary to place it beside other information and highlight it. For example, superposing it graphically over the geometric plan of the building. Three types of maps can be systematically drawn (in floor plan, elevation, section): firstly, a map of values with notes about the spatial, colouristic, historical and artistic values of each part or the whole of the building; secondly, a map of deficits with notes on the building’s social problems, features, and lesions and degradations; and thirdly, the map of former and/or existing uses showing how the building was and is used before intervention.
II. Reflection and the project

The diagnosis phase must bring together all information in orderly fashion (plans of values, deficits and previous uses). The team of Professor Luigi Zordan at the Università degli Studi dell’Aquila (Italy) has developed a ‘reasoned guide’ offering examples of how to represent this data in order to produce a judicious diagnosis (Luigi Zordan: Le tradizioni del costruire della casa in pietra: materiali, tecniche, modelli e sperimentazioni, 2002).
Confirmation of hypotheses
The initial evaluation should produce an overview of the building and confirm the hypotheses put forward at the start of multidisciplinary studies, based on observations and tests. However, it is always possible to raise new hypotheses (initial hypotheses not subsequently confirmed, appearance of new conditioning factors, etc.) and return to the study phase in order to verify them.

Writing a report
At the end of this stage it is once again necessary to establish, in writing, the knowledge gained about the building. This report will list the building’s composition, describe and justify its values, list its deficits and their causes, and offer recommendations. The diagnosis report will always be written on the basis of individuation of problems and their causes, according to the criterion of technical impartiality.
This is a reasoned expert report and must be written so that other technical professionals external to the process can understand it, but it must also include a summary that can be understood by a non-professional reader. The conclusions must be clear, concise and complete. This note will specify the strong and weak points in order to show the potential for rehabilitation of the existing building.
Reflection and decision-making

Feasibility

Now, with a perfect knowledge of the building and its users, it is possible to study the feasibility of the client’s ideas. A further dialogue will take place with the owner about his/her future needs and economic possibilities with regard to the potential of the existing building.

The feasibility study will be based on three partial studies: 1. What we call the transformability map, which simply compares and contrasts the maps of values, deficits and previous uses produced in the last stage, showing which parts of the building would be subject to changes (eliminations, additions, alterations, etc.) and which parts should be conserved to preserve their value; 2. The programme of new uses proposed by the client (the brief) and rationalized (surfaces, relations between uses, etc.) by the architect/engineer; 3. The evaluation of regulatory conditioning factors associated with parameters of urban planning and listing of cultural objects.

And, finally, it is time to go back to the client’s ideas and analyse their feasibility. (Meeting at Selva del Camp Town hall, Spain)
Another two examples from Professor Zordan's guide show us how to graphically represent what he calls the map of transformability and processes of compatibility with a view to reflecting on the integration of new uses.
Continuity of use is generally accepted as the best way of protecting this architecture, though in some cases its revitalization involves a change of use. It is important to suggest sensible changes of use, since some proposals may involve the practical total loss of the values of traditional architecture.

Confirmation of criteria

As commented above, due to its great diversity, traditional Mediterranean architecture cannot be approached with fixed criteria. In this stage, the architect/engineer has to establish the criteria to be applied to the project (additions, eliminations, priority of aspects of habitability, reintegration of lost parts, reversibility of risky interventions, consolidation of ruined parts, etc.). Initially, neither extreme should be dismissed: pure conservation or pure restoration. The Charter on the Built Vernacular Heritage represents a first general framework to consider.

Decision-making

Having confirmed the criteria, the compatibility of the type of intervention has to be considered, striking a balance between improvement to the inhabitants’ living conditions, safety of the structure, safeguarding heritage values and the available economic resources. And, finally, the decision can be taken, with full knowledge of the type of rehabilitation work (from conservation to restoration).

Three examples of buildings restored according to different criteria. (Lefkara, Cyprus / Thessalonica, Greece / Damascus, Syria)
5 Project

Outline proposals
The outline proposals are a stage of comprehensive dialogue with the client, during which it should be possible to activate the participation of the inhabitants or users of the building. It will gauge which of the various planning alternatives best adapt to the proposed alterations and the existing building by applying the criteria outlined during the previous phase. From the start, particular attention will be paid to compliance with the legal framework. Finally, the client will reach an informed agreement as to the type of intervention contained in the project.

Project
The working drawings will describe the intervention in sufficient detail to be able to follow administrative procedures, contract the work and carry it out without deviating from established costs. The project interprets the criteria of intervention and applies a series of technical parameters for the physical construction of the intervention.

The outline proposals phase systematically studies the alternatives for the integration of the new programme of uses into the building to be rehabilitated. One method is J.N. Habraken’s, which studies the flexibility of spaces on the basis of what he calls the theory of supports, used in some European rehabilitation work (J.N. Habraken: Denken in Varianten, het methodisch ontwerpen van dragers, 1974).
As a general rule, therapeutic intervention in a building’s problems must address the causes, not just the symptoms. The choice of a traditional or a modern technique will also depend on the kind of builder who is contracted. It is now a question of finding out whether traditional techniques are still used in local construction and whether it is possible to recover them to carry out rehabilitation.

Here we would like to mention a trend in theory that we think could usefully be adapted to the rehabilitation of traditional architecture and which centres on a necessary knowledge of traditional techniques for responsible intervention in this form of architecture. It includes the works by the Compagnons du Devoir in France, studies on timber structures (*Carpintería de lo blanco*) by Enrique Nuere in Spain and, most particularly, by Paolo Marconi in Italy, who has put this knowledge to practice in the *Manuale del Recupero*. The *Manuale* documents local construction tradition (generally of a municipality or homogeneous region) and presents professionals with forms of traditional intervention. Another step forwards taken in Italy is the *Codice di Pratica* which introduces methods of analysis and intervention in traditional architecture (structural consolidation, earthquake, etc.), seeking to reconcile traditional construction and more modern techniques. These documents should be consulted during this phase and their

The design of the project calls for consultation of publications on local construction (Paolo Marconi: *Manuale del Recupero del Centro Storico di Palermo*, 1997 / Antonino Giuffrè and Caterina Carocci: *Codice di Pratica per la Sicurezza e la Conservazione del Centro Storico di Palermo*, 1999). The project specifies interventions to consolidate and reinforce the building in sufficient detail on the right scale. (Reinforcement of the timber floor of Can Plantada, Spain – Cristina Gonzalo Diego)
recommendations followed when working on the project.

It was these documents that launched the debate in Italy about the use of modern techniques to reinforce and consolidate old structures. During the design of the project, the impact of each of the techniques used will be studied, along with their compatibility with the existing building and the final visibility of the intervention.

The same pains should be taken when integrating modern installations into the building. From the outset, measures must be taken for their integration without detracting from façades and interiors, for example by proposing specific layouts.

The project also has to incorporate such parameters of sustainability as are reasonable for the scale of the intervention (water- and energy-saving measures, introduction of renewable energies or facilities for the correct management of domestic waste, etc.).

At the same time, each of the design decisions will study what is now called the maintainability of construction solutions—that is, ensuring that all elements are accessible for subsequent ease and safety of maintenance. The most obvious example is a window that is practically impossible to clean, etc.

The project must be detailed but open to modifications justified by discoveries made during rehabilitation work. It will include the following documentation: geometric definition of the proposal with measurements (floor plans, sections and elevations), plans of the structure, finishes and installations, technical description, bill of quantities, budget, technical specifications, and health and safety measures.

II. Reflection and the project

Work on recovering façades specifies colours but also the type of chemical product to be used and how to apply it and control the quality. (Façade in Barcelona, Spain – Chroma Rehabilitacions Integrals SL)
6 Rehabilitation

Tender action
In order to guarantee correct rehabilitation, the choice of the builder or contractor is very important. In some regions it is still possible to find builders who are familiar with and use traditional construction techniques, though they are, sadly, fast disappearing. In some cases it may be possible to train the builder(s) in specific techniques, but in most cases it is simply not possible to use certain techniques because of their economic cost. If working with a construction firm that has little specialized knowledge, particular attention must be paid to the contract in order to supervise materials and techniques. The type of contract will guarantee the quality of work and the professionalism of the builder(s). Some tasks of cleaning delicate walls or artistic works call for the temporary contracting of restoration professionals using specific methods and techniques.
Obtaining the building permit

The programming of rehabilitation has to take into account the waiting time for the relevant authorities to issue permits. In the case of listed buildings, waiting times may be longer. The report may also be unfavourable, necessitating a return to the project phase.

Carrying out the work

Works direction in the case of a traditional building calls above all for flexibility and dedication. Unforeseen events tend to arise as work is carried out, and it is difficult to only apply what is indicated by the project. The follow-up of the work may, then, allow the ongoing revision of the project and reinterpretation of the building in the light of new discoveries, which, in some cases, may call for changes to the project. The project describes construction solutions to reinforce, consolidate or renovate an element. During work it will be necessary to establish mechanisms to verify the suitability of the construction solution and its correct functioning.

Important aspects to follow up are initial considerations, economic supervision, and control of the effectiveness of solutions to reinforce and coordinate the safety of work. During work a mechanism will have been established to produce a dossier about all the work carried out, upon completion. This comprises a series of plans that reflect how the rehabilitation as built. This document is vital for documenting work in accordance with the Venice Charter but also for organizing a maintenance programme (see stage 7).

There are also a series of organizational aspects of the work that have to be taken into account, ranging from the programming of work to the planning of the entry of several trades, to studies of site accessibility (a great deal of the work is carried out in the narrow streets of historic centres), interior work using small machines (low heights, narrow passages, etc.), foreseeing the protection of certain parts of the building from the elements and rehabilitation work itself, and avoiding accumulation of workers. Furthermore, it is difficult to envisage demolition operations on a rehabilitation site; these will in fact be deconstruction or dismantling operations. At the start of work, elements to be dismantled for reuse will be marked (collecting tiles, timber beams, etc.) and measures will be taken for the correct disposal of site waste. The project supervisor must at all times supervise dismantling work and take the necessary safety measures to avoid accidents due to partial imbalances in the building or the appearance of materials or products that are dangerous for health (asbestos cement, asbestos insulation, electrical transformers with PCBs, etc.).

Handover of the work

Upon completion of the work, legal procedures will be carried out to consider it finished and, in some cases, to apply for grants. It is important to use this stage to analyse the management, construction and compliance of the project with planned uses. Though at this point some aspects can be corrected, this feedback stage should serve to improve the project phase for subsequent commissions; no opportunity to learn from mistakes should be wasted.

When organizing the work site, it is useful to put up a notice board showing the main plans to ensure an overview of the process and pinpoint problems at all times. (Beit Baluk, Damascus, Syria)
As we have commented several times, traditional architecture is extremely vulnerable. Custom has been responsible for its conservation (whitewashing during spring celebrations, checking tiles after high winds, etc.), but socio-cultural changes in today's world (the culture of disposability) have accentuated the abandonment of this form of architecture.

If the need for rehabilitation has arisen, it is due in part to such abandonment. Having made the effort to undertake rehabilitation, it is important to make the most of the opportunity to promote its upkeep, because on the very day rehabilitation work is completed, the building starts to age.

Publicizing the building's values among the community

The breakdown of the traditional world and cultural homogenization have led to disregard for much of this architecture as a symbol of the poverty and backwardness of its
population. Once rehabilitation work is complete, it has to be a priority to acquaint the community with its values and make them part of its rehabilitation. Each case will be different but it is important to promote some kind of sensitization activity to show the value of the work carried out (a small event to show how work was carried out, publication of photographs of before and after rehabilitation, publication of the work in the local press, etc.).

Choice of the model of maintenance
An initial definition of building maintenance would be the series of periodic tasks carried out in order to conserve it, during its lifespan, in suitable conditions to cover foreseen needs. Maintenance is habitually associated with the idea of repairing damaged elements, what we call corrective maintenance, but what the RehabiMed method proposes is to think in terms of planned and preventive maintenance.
Planning involves the preparation of a calendar of maintenance operations, and preventing means carrying out maintenance operations before the construction element deteriorates.

The ‘identity card’
In order to systematize this way of organizing maintenance, we propose to give the building an ‘identity card’, a document that compiles all the information about the building and incorporates a timeframe to programme maintenance operations. This card will be presented to the owner (in some cases to all the tenants) so that recommendations can be followed. In most cases, the architect/engineer who completed work and is perfectly acquainted with the building will prepare the information about the building and a timeframe of maintenance operations.
Information about the building will comprise the dossier as built (see previous stage) and recommendations for use of the building. Information about the building will comprise the dossier as built (see previous stage) and recommendations for use of the building. The timeframe will also programme maintenance operations for the coming 10 years (cleaning, inspections, repairs and renovation). The timeframe should also indicate who will carry out these tasks (the user, a trusted builder, an installer, a specialized firm or the architect/engineer).
These cards can also be used to make a note of maintenance operations carried out, incidents that have taken place and alterations made, so that with the passing of the years it becomes a record. The ‘identity card’, a kind of clinical record about the building, will also in the long term provide invaluable information for the conservation of and future interventions in the building.
Maintenance work according to a timeframe

The operations programmed on the calendar will include a series of periodic inspections by an architect/engineer to evaluate the building’s safety (for example, in relation to detachment of façades, risk of gas leaks, structural deformations) and reprogramme the timeframe. In some cases, it will be possible to detect serious problems in time and propose the repeat of the entire process (1. Preliminaries).

In this way, the architect/engineer will become, like a family doctor, the ‘general technical practitioner’ with the building among his or her records, thereby ensuring long-term sustainability of what is now a complete rehabilitation project.

1 To guide: ‘to go before, showing a path’.
2 LYNCH, Kevin: What time is this place?, 1972.
3 Analysis: ‘distinction and separation of the parts of a whole in order to discover its principles and elements’.
4 Synthesis: ‘composition of a whole by the joining together of the parts’.
5 Hypothesis: ‘a provisional theory or supposition taken as the basis for research to confirm or deny its validity’.
6 Diagnosis: ‘act of deciding the nature of an illness by observation of the symptoms and signs’.
7 Guidelines in practice of the Charter on the Built Vernacular Heritage, ratified by the ICOMOS 12th General Assembly, in Mexico, October 1999: ‘1. Research and documentation
 Any physical work on a vernacular structure should be cautious and should be preceded by a full analysis of its form and structure. This document should be lodged in a publicly accessible archive.

2. Siting, landscape and groups of buildings
 Interventions to vernacular structures should be carried out in a manner which will respect and maintain the integrity of the siting, the relationship to the physical and cultural landscape, and of one structure to another.

3. Traditional building systems
 The continuity of traditional building systems and craft skills associated with the vernacular is fundamental for vernacular expression, and essential for the repair and restoration of these structures. Such skills should be retained, recorded and passed on to new generations of craftsmen and builders in education and training.

4. Replacement of materials and parts
 Alterations which legitimately respond to the demands of contemporary use should be effected by the introduction of materials which maintain a consistency of expression, appearance, texture and form throughout the structure and a consistency of building materials.

5. Adaptation
 Adaptation and reuse of vernacular structures should be carried out in a manner which will respect the integrity of the structure, its character and form while being compatible with acceptable standards of living. Where there is no break in the continuous utilisation of vernacular forms, a code of ethics within the community can serve as a tool of intervention.

6. Changes and period restoration
 Changes over time should be appreciated and understood as important aspects of vernacular architecture. Conformity of all parts of a building to a single period will not normally be the goal of work on vernacular structures.’

The maintenance timeframe programs operations over the year and indicates which professional should carry them out. (Carnet d’entretien, PI-BAT, 1991, Switzerland)